888 Chapter 15:‘Mu\tiple Integrals

z Solution Figure 15.6 displays the volﬁme beneath the surface. By Fubini’s Theorem
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FIGURE 15.6 The double integral
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Reversing the order of integration gives the same answer:
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the volume of the region pbounded above by the elliptical parabo-
loidz = 10 + 52 + 3y* and below by the rectangle R: 0 = * =1,0=y=2

Solution The surface and volume are shown in Figure 15.7. The volume is given by the
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Exercises m

Evaluating lterated Integrals
Tn Exercises 1-14, evalvate the iterated integral.

2 4 2 pl
1./]2xydydx 2. /f (x—-y)dydx
140 0J-1
o rl
3.//(x+y+l)dxdy
—1J -1
3 p2 _
5]/ (4 — y*) dydx
oJo
1 pl
y
7. // dx dy
o 01+xy
n2 pins
9./ f &Y dy dx
o J1
2 pl2
11.// y_s‘mxdxdy
-1Jo

A [1/1( x’L + y2> dxd
: - y
0 Jo 2
3 0
6. / / (% — 2xy) dy dx
0 J-2
4 pa
s [ Ges)ee
1 Jo
g2
10. / f xyeEdydx
o J1

2 p
12. / / (sinx + €08 y) dxdy
T 0 -

4 pe nx ' 2 2
13. T dxdy 14. xInydyadx
1J1 X -1J1

Evaluating Double Integrals over Rectangles
In Exercises 15-22, evaluate the double integral over the given
region R.

15. / (6y* — 2x) dA, R 0=x=1, p=y=2
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16. ,[/(3\/2’%)‘1‘4, R: 0=x=<4, 1=y=2
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17. f/wcosydA, R —-1=x=1 0=y="T
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18. /fysin(ery)dA, g —mr=x=0, g=y="T
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29. Find the volume of the region bounded above by the surface

' //gr*y dA, R O .s x=In2, 0=y=h2 z = 2 sinxcosy and below by the rectangle R:0 = x = 77/2,
, 0=< y= 7T/4.
‘ o & dA R 0=x=2 0=y=I1 30. Find the volume of the region bounded above by the surface
’ . z=4—y* and below by the rectangle R:0=x=1,
R . . 0= y= 2.
, X 2 3
[/ o 1dA, R 0=x=1 0=y=2 31. Find a value of the constant k so that/ / kx?y dxdy = 1.
, ¥ 1Jo
)
oy A R 0=x=1 0=y=1 32 Evaluate/il/(; xsm\/§dydx.
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R 33. Use Fubini’s Theorem to evaluate
Fxercises 23 and 24, integrate f over the given region. /2 /‘ 1 X4
Square  f(x,y) = 1/(xy) over the square 1 =x =32, oJo 1Ty 4
l=y=2 34, Use Fubini’s Theorem to evaluate
_Rectangle f(x,y) = ycosxy over the rectangle 0 = x < r, 1 p3
p=sy=1 ' //xe"ydxdy.
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Find the volume of the region bounded above by the paraboloid 3

7=x2+y and below by the square Ri—1=x =1, . Use a software application to compute the integrals
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1=y=1 a.// ) x3dxdy
Find the volume of the region bounded above by the elliptical 0 Jo &)

paraboloid z =16 — x> ~ y* and below by the square 2,1
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y—x
RO=x=20=y=2.

G+ .
‘Explain why your results do not contradict Fubini’s Theorem.

dy dx

Find the volume of the region bounded above by the plane
z=2—x—1y and below by the square R:0 =x =1,
0=y=1. 36, If f(x, y) is continuous over Rra=x=b,c =y =d and

Find the volume of the region bounded above by the plane _ A
7=y/2 and below by therectangle R: 0 < x = 4,0 <y < 2, Fx,y) = ude flat, v) dv du

-~ on the interior of R, find the second partial derivatives F, and Fy,.

5.2 Double Integrals over General Regions

In this section we define and evaluate double integrals over bounded regions in the plane
which are more general than rectangles. These double integrals are also evaluated as iterated
integrals, with the main practical problem being that of determining the limits of integration.
Since the region of integration may have boundaries other than line segments parallel to the
coordinate axes, the limits of integration often involve variables, not just constants.

Double Integrals over Bounded, Nonrectangular Regions

To define the double integral of a function f(x, y) over a bounded, nonrectangular region

— R, such as the one in Figure 15.8, we again begin by covering R with a grid of small rect-
e g ‘

= ~ angular cells whose union contains all points of R. This time, however, we cannot exactly
R fﬁﬁ'—\—— fill R with a finite number of rectangles lying inside R, since its boundary is curved, and

Ayl T e 70 some of the small rectangles in the grid lie partly outside R. A partition of R is formed by

taking the rectangles that lie completely inside it, not using any that are either partly or

2% I / completely outside. For commonly arising regions, more and more of R is included as the
nE // norm of a partition (the largest width or height of any rectangle used) approaches zero.

i “}— Once we have a partition of R, we number the rectangles in some order from 1 to n

'r and let AA; be the area of the kth rectangle. We then choose a point (xy, y,) in the kth rect-

angle and form the Riemann sum -
URE 15.8 A rectangular grid
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